Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Understanding what shapes the cold gas component of galaxies, which both provides the fuel for star formation and is strongly affected by the subsequent stellar feedback, is a crucial step towards a better understanding of galaxy evolution. Here, we analyse the H i properties of a sample of 46 Milky Way halo-mass galaxies, drawn from cosmological simulations (EMP-Pathfinder and Firebox). This set of simulations comprises galaxies evolved self-consistently across cosmic time with different baryonic sub-grid physics: three different star formation models [constant star formation efficiency (SFE) with different star formation eligibility criteria, and an environmentally dependent, turbulence-based SFE] and two different feedback prescriptions, where only one sub-sample includes early stellar feedback. We use these simulations to assess the impact of different baryonic physics on the H i content of galaxies. We find that the galaxy-wide H i properties agree with each other and with observations. However, differences appear for small-scale properties. The thin H i discs observed in the local universe are only reproduced with a turbulence-dependent SFE and/or early stellar feedback. Furthermore, we find that the morphology of H i discs is particularly sensitive to the different physics models: galaxies simulated with a turbulence-based SFE have discs that are smoother and more rotationally symmetric, compared to those simulated with a constant SFE; galaxies simulated with early stellar feedback have more regular discs than supernova-feedback-only galaxies. We find that the rotational asymmetry of the H i discs depends most strongly on the underlying physics model, making this a promising observable for understanding the physics responsible for shaping the interstellar medium of galaxies.more » « less
-
Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuringβ(the exponent of the adopted power law LF,dN/dL = ϕ(L)∝(1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime whereβ > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime whereβ < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M⊙. We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF withβ = 2.55−0.56+0.72fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ∗= 54M⊙pc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M⊙(within its Einstein radius) in the galaxy cluster.more » « less
An official website of the United States government
